% scribe: Matias Damian Cattaneo % lastupdate: 12 November 2005 % lecture: 18 % references: Durrett, Section 2.6 % title: Poisson Processes: Part II % keywords: % end \documentclass[12pt, letterpaper]{article} \include{macros} \begin{document} \lecture{18}{Poisson Processes -- Part II}{Matias Damian Cattaneo}{cattaneo@econ.berkeley.edu} \section{Compound Poisson Distribution} We begin by recalling some things from last lecture. Let $X_{1},X_{2},...$ be independent and identically distributed random variables with distribution $F$ on $\R$; that is:% \begin{equation*} F\!\left( B\right) =\P \!\left[ X\in B\right] \end{equation*} Let $N_{\lambda }$ be a Poisson random variable with mean $\lambda $; that is:% \begin{equation*} \P \!\left[ N_{\lambda }=k\right] =\frac{\lambda^{n}e^{-\lambda }}{k!},\text{ \ \ \ }n=0,1,2,\ldots. \end{equation*} \begin{theorem} Let $S$ be the sum of a Poisson random number of i.i.d.\ random variables; that is:% \begin{equation*} S=\sum_{i=1}^{N_{\lambda }}X_{i}. \end{equation*} Let $L\!\left( B\right) =\lambda F\!\left( B\right) $ for $B\in \borel$, where $L$ is a positive measure on $\R$. Then the distribution of $S$ is determined by its characteristic function:% \begin{equation*} \E\!\left[ e^{itS}\right] =\exp \!\left\{ \int_{\R% }\left( e^{itx}-1\right) L\!\left( dx\right) \right\}. \end{equation*} \end{theorem} \textbf{Remark: } Call this distribution of $S$ compound Poisson with parameter $L$ (denoted by $CP\!\left(L\right)$) and observe that it is $\infty $-divisible since:% \begin{equation*} CP\!\left( L\right) \ast CP\!\left( M\right) =CP\!\left( L+M\right), \end{equation*}% so the convolution $n$-th root of $CP\!\left( L\right) $ is $CP\!\left( \frac{L}{% n}\right) $. \textbf{Interpretation of }$L$: Recall that Poisson point process $% \longleftrightarrow $ counting measure, and we have% \begin{equation*} N\!\left( B\right) =\sum_{i=1}^{N_{\lambda }}1\!\left\{ X_{i}\in B\right\}. \end{equation*}% That is, $N\!\left( B\right) $ is the number of values $1\leq i\leq N_{\lambda }$ with $X_{i}\in B$. Observe% \begin{equation*} N\!\left( \R\right) =N_{\lambda }\thicksim Poisson\!\left( \lambda \right) \end{equation*} What is the distribution of $N\!\left( B\right) $? Apply the previous theorem with $X_{i}$ replaced by $1\!\left\{ X_{i}\in B\right\} $. So we have% \begin{equation*} \E\!\left[ e^{itN\!\left( B\right) }\right] =\exp \!\left\{ \!\left( e^{it}-1\right) L\!\left( B\right) \right\}, \end{equation*}% so $N\!\left( B\right) \thicksim Poisson\!\left( L\!\left( B\right) \right) $% . More generally for $B_{1},B_{2},...,B_{m}$; $m$ disjoint sets we can compute, by the same argument,% \begin{equation*} \E\!\left[ e^{i\sum_{k=1}^{m}t_{k}N\!\left( B_{k}\right) }% \right] =\prod_{k=1}^{m}\E\!\left[ e^{it_{k}N\!\left( B_{k}\right) }\right], \end{equation*}% and observe that the LHS is the multivariate characteristic function of the vector $\left( N\!\left( B_{1}\right) ,N\!\left( B_{2}\right) ,...,N\!\left( B_{m}\right) \right) $ at $\left( t_{1},t_{2},...,t_{m}\right) $, and the RHS is the multivariate characteristic function of a collection of independent random variables with a Poisson distribution. Consequently, by the uniqueness theorem for multivariate characteristic function (see text)\ we conclude that $N\!\left( B_{1}\right) ,N\!\left( B_{2}\right) ,...,N\!\left( B_{m}\right) $ are independent Poisson variables. \bigskip \section{Summary so far} Now we summarize our work so far. Let $X_{1},X_{2},...$ be i.i.d.\ $F$. Let $N_{\lambda }\thicksim Poisson\!\left( \lambda \right) $, independent of $X_{1},X_{2},...$% . Let $N\!\left( B\right) =\sum_{i=1}^{N_{\lambda }}1\!\left\{ X_{i}\in B\right\} $, the point process counting values in $B$ up to $N_{\lambda }$. Then $% \left( N\!\left( B\right) ,B\in Borel\right) $ is a \textbf{Poisson random measure} with mean measure $L$, meaning that if $B_{1},...,B_{m}$ are disjoint Borel sets, $(N\!\left( B_{i}\right) $, $1\leq i\leq m)$ are independent with distributions $% Poisson\!\left( L\!\left( B_{i}\right)\right)$ for $1\leq i\leq m$, respectively. \begin{example} (From previous lecture) Let $00$. \item $L\{0\}=0$. \item $\int_{-1}^{1} x^2L(dx)<+\infty$. \end{enumerate} \end{definition} For such an $L$, $\sigma^2\geq 0$, $c\in \mathbb{R}$, define the L\'evy-Khinchine exponent in the following way: $$\Psi_{L, \sigma^2, c}(t)=\int \left(e^{itx}-1-it\tau(x)\right) L(dx) - \frac12\sigma^2t^2+itc,$$ where $\tau(x)$ is the truncation function defined by $\tau(x)=x\mbox{\bf 1}_{|x|\leq 1}+ \mbox{\bf 1}_{x> 1}- \mbox{\bf 1}_{x<1}$. \begin{theorem} Two important results: \begin{enumerate} \item $e^{\Psi(t)}$ is an infinitely divisible characteristic function. \item $e^{\Psi(t)}$ determines $L, \sigma^2, c$ uniquely. \end{enumerate} \end{theorem} Before we prove this theorem, we consider a few examples. \begin{example} \begin{enumerate} \item Consider a point mass $\delta_c$ at $c$. Its characteristic function is $e^{itc}$, and we see that $itc= \Psi_{0,0,c}(t)$. \item Consider now a normal distribution $N(c,\sigma^2)$. Its characteristic function is $e^{itc-\sigma^2t^2/2}$ and it is easy to see that $\Psi(t) = itc-\sigma^2t^2/2$ corresponds to $(0,\sigma^2,c)$. \item Now, let $N$ be a Poisson random measure. For each $f\geq 0$, we have $$E\!\left(e^{-\theta\int fdN}\right) = \exp\!\left(\int \left(e^{-\theta f(x)} -1\right) \mu(dx)\right)\; \mbox{}$$ If $\mu$ is bounded measure, take $\theta=-it$, $$E\!\left(e^{it\int fdN}\right) = \exp\!\left( \int\left(e^{itf(x)}-1\right)\,\mu(dx)\right).$$ Let $L(dy)= \mu\{x: f(x)\in dy\}$ (restricted to $\{0\}^c$). For those who doesn't like to see $dy$'s outside the integral sign, the definition of $L$ could be $L(B):=\mu(f^{-1}(B))$. Then $E\!\left(e^{it\int fdN}\right)=\exp\!\left(\int \left( e^{ity}-1\right) L(dy)\right)$. Here we can recognize the enemy from the beginning of the lecture, and the characteristic function of $\int fdN$ is $\exp(\Psi_{L,0,c})$ where $c=\int \tau(x)L(dx)$. \end{enumerate} \end{example} \begin{proof} First, we will prove that $e^{\Psi(t)}$ is a characteristic function, and the infinite divisibility is obvious ($n$-th root is $\Psi_{(L/n, \sigma^2/n, c/n)}$). Fix $t$. Observe that for $|x|<1$ we have % \begin{equation} e^{itx}-1-it\tau(x)=e^{itx}-1-itx\leq cx^2t^2 \label{lmproof1} \end{equation} % for $|xt|$ small. Therefore, the integral converges because $\int_{-1}^1 x^2 L(dx)<+\infty$ and $L\{(-\varepsilon,\varepsilon)^c\}<+\infty$. Hence $\Psi(t)$ is a well-defined complex number for all $t\in \mathbb{R}$. Second, since the product of characteristic functions is also a characteristic function we may assume without loss of generality that $\sigma^2$ and $c$ are both $0$. Let $L_n$ be $L$ restricted to $\left(-\frac1n, \frac1n\right)^c$. Note that $\exp(\Psi_{L_n,0,0}(t))$ is a characteristic function: since $L_n$ is finite, $\exp(\Psi_{L_n,0,0}(t))$ is the characteristic function of a shifted compound Poisson variable with parameter $L_n$. From \ref{lmproof1} and the dominated convergence theorem we see that % $$\lim_{n\rightarrow \infty} \Psi_{L_n,0,0}(t)=\Psi_{L,0,0}(t).$$ % Since $\exp$ is continuous function we immediately have that $\exp(\Psi_{L_n,0,0}(t))\rightarrow \exp(\Psi_{L,0,0}(t))$ and it only remains to prove that $\Psi(t)$ is continuous at $0$ (in order to apply the L\'evy continuity theorem). This is left as an exercise for the reader. (The same dominated convergence theorem will work.) \end{proof} \bibliographystyle{plain} \bibliography{../books.bib} \end{document}